HARVESTING THE SKIES

Augmenting Rain through Cloud Seeding

George W. Bomar
State Meteorologist
George.bomar@tdlr.texas.gov

TEXAS DEPARTMENT OF LICENSING AND REGULATION (Austin)

For the City of Wichita Falls January 24, 2013

Key Definitions

Weather modification and control

Changing or controlling,

or attempting to change or control,

by artificial methods (cloud seeding using aircraft)

the natural development

of atmospheric cloud forms or precipitation forms that occur

in the troposphere

TEXAS WEATHER MODIFICATION ACT 1967

Licenses and permits

Expertise of personnel in control and in charge

Technical merits of proposed projects: Specified *Target* and *Operational* Areas

Exemptions

R & D by state and federal institutions
Laboratory research
Emergency operations (fire, frost, sleet, fog)

Weather Modification Advisory Committee

Elections

Hail suppression activities only

EARLY OPERATIONAL PROGRAMS

COLORADO RIVER MUNICIPAL WATER DISTRICT

Big Spring: Begun in 1971

Cloud base seeding (AgI) with aircraft
Target-control regressions analysis: 34 percent increase
in rainfall in target vs. 13 percent in control
Cotton production up 48% in target vs. 8 percent in control
Downwind seeding effect: Rain increases up to 75 miles

CITY OF SAN ANGELO

Base seeding (AgI) in 1985-1989

Target-control regression analysis: 17 percent increase in rainfall in target (27 to 42% increase nearest reservoirs)

Focused RESEARCH

HIPLEX

High Plains Cooperative Program: USBR (1974-1980)

 Multi-cell convective systems offer more promise for significant rain enhancement

SOUTHWEST COOPERATIVE PROGRAM

Randomized Cloud-Seeding Research: USBR (1986-1990)

Target vs. control approach: 99 "Seeded" vs. 114 "No-seed"

 Seeded cells yielded 2.63 times as much radar-estimated rainfall as non-seeded cells (significant at 5 percent level)

Focused RESEARCH

TEXARC

Texas Exercise in Augmenting Rainfall thru Cloud seeding: NOAA (1994-1996)

- Cloud microphysical structure strongly dependent on CBTs
- Timing and targeting are crucial

SPECTRA

Southern Plains Experiment in Cloud seeding of Thunderstorms for Rainfall Augmentation: USBR (2004-2006)

- Documented microphysical links between CCN and mechanisms responsible for forming precipitation
- Demonstrated that sizes of CCN are critical to formation of rainfall

Target and Control Method of Assessment

Origins of the Texas Program

- Drought of the '90s the catalyst
- Collaboration of water districts
 "Weather modification associations" established
 Representation from each district (county)
- Public meetings to explain and reassure
- Aggressive campaign to inform elected officials

ROLE OF Water Conservation Districts

Progeny of the 1950s drought

Aims: To control draw-down from the aquifers

To facilitate recharge of the aquifers

Vested with ad valorem taxing authority

Governed by a Board whose members are elected

STATE Support

Initial funding for 4 projects (1997)

State funds awarded on a 50-50 cost-share basis Agreements made with *political subdivisions*

Allocation based on <u>acreage</u> per project (8 cents an acre)

Supplemental funding (1998-2003) for new projects

STATE Support

Appropriations for Rain Enhancement

1997	\$ 550,000	Projects 4
1998-99	4,197,739	6
2000-01	4,904,626	8
2002-03	4,967,148	11
7-yr total	\$ 14,619,513	

STATE Support

State appropriations

\$ 14.6 million

Expenses for Seeding Operations

Procurement of equipment

Staff support

Expendables

Technical Support

Public information, pilot training, flare development

Evaluation

1.098 million 8%

Radar, satellite-based statistical assessments

13.066 million 89%

0.436 million 3%

[] Year began operations

THE BOTTOM LINE

PROJECT SUMMARY (2004-12)

Cumulus towers seeded each season (9-yr avg.) = 388

Single cell storms - 1634 (66%) Multi-cell storms - 846 (33%)

Total number of operational days (avg.) = 165 daysMarch 8 (2006, 2010) - October 18, 2010

Amount of seeding material = 4,099 flares per season

228 kg per season

THE BOTTOM LINE

Radar-based statistical assessment (2004-2012)

Single-cell convective towers ONLY
Seeded vs. non-treated

DURATION
COVERAGE
CLOUD VOLUME
CLOUD TOP
CLOUD MASS
RAINFALL MASS

40 percent *longer*35 percent *greater*41 percent *greater*3 percent *higher*44 percent *greater*111 percent *greater*

- Real-time quantification of missed opportunities
- Estimates of seeding dosage: 80 IN per liter

THE BOTTOM LINE

Estimated *increased* rain output from seeded (single-cell) storms

Avg. for 9-year period ('04-12) 146,019 acre-feet

Estimated cost of rainwater produced

Avg. for 9-year period \$ 10.82 per acre foot

Estimated increased rain output for multi-cell storms:

Avg. 9-year period ('04-12): 1,833,415 acre-feet

Seedability

	La Nina	Neutral	El Nino	La Nina
	<u>2008</u>	2009	2010	2011
ONI	-0.8	-0.1	+0.8	-0.6
PGCD	29 events	32	41	26
MI	-3.5	-3.3	-4.3	-3.6
W TX	77 events	188	127	128
MI	-4.4	-4.2	-4.5	-4.1
SW TX	42 events	80	77	42
MI	-3.3	-4.5	-4.2	-3.8

[&]quot;Continental" cloud conditions are more prevalent in La Nina seasons
--making them <u>less</u> seedable with AgI

Thank You for Your Attention

